4,094 research outputs found

    Beam Induced Electron Cloud Resonances in Dipole Magnetic Fields

    Full text link
    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring (CESR). These measurements are supported by both analytical models and computer simulations

    Investigation of methods for machine learning associations between genetic variations and phenotype

    Get PDF
    The relationship between genetics and phenotype is a complex one that remains poorly understood. Many factors contribute to the relationship between genetic variations and differences in phenotype. An improved understanding of the genetic underpinnings of various phenotypes can help us make important advances in testing for, preventing, treating, and curing a number of diseases and disorders. The recent popularization of direct-to-consumer sequencing services, coupled with consumers releasing their genetic information for public use, has led to an unprecedented level of access to genetic information. Crowd-sourcing the problem of developing robust genome-wide association techniques for ever larger amounts of data is a promising trend. This thesis explores likely methods to data mine one such public genetic data repository, openSNP, for correlated genotypes and phenotypes. Particular care is given to data clean-up and the steps required to preprocess public data for machine learning. The preprocessing methods are detailed in such a way that they may be applied to other genetic data repositories that already exist, for example the Personal Genome Project, as well as genetic data repositories that may become available in the future. Following data clean-up, a number of machine learning techniques are investigated, applied, and assessed for their utility in such a big-data problem. No single machine learning approach was found to be sufficient; the combination of imbalanced phenotype response classes and an underdetermined system led to a difficult machine learning challenge. Additional techniques must be explored or developed in order to make such genome-wide association studies possible and meaningful

    Clause-Modifying Particles in Ata Manobo

    Get PDF

    The Manson impact structure, a possible site for a Cretaceous-Tertiary (K-T) boundary impact

    Get PDF
    The Manson impact structure, about 35 km in diameter, is the largest impact crater recognized in the United States. Its center is located near the town of Manson, 29 km west of Fort Dodge, Iowa. The structure is not well known geologically because it is covered by tens of meters of glacial deposits. What is known about the structure was learned mostly from the study of water well cuttings. At Manson the normal Phanerozoic and Proterozoic sedimentary rocks were replaced by centrally uplifted Proterozoic crystalline rocks that are representative of the normal basement: This central uplift is surrounded by completely disrupted rocks which are roughly encircled by peripherally faulted and slumped sequences of normal sedimentary strata. Radially outward normal sedimentary strata are uplifted slightly. Manson, once interpreted as a cryptovolcanic structure, is now considered an impact structure based on its circular shape, its central uplift and the presence of multiple intersecting sets of shock lamellae in quartz grains from the central uplift. The Ar-40/Ar-39 age spectrum dating results for a microcline separate from the Manson 2-A core in the central uplift is shown. This spectrum is interpreted to indicate a nearly complete degassing of the microcline at the time of the Manson impact. The remainder of the gas released climbs in age with increasing temperature of release. This pattern of the age spectrum is interpreted to represent diffusional loss due to reheating at the time of the impact and during subsequent cooling. Shocked quartz grains, present in the iridium-bearing layer at the K-T boundary throughout the world, have a significantly larger size and are more abundant in the western interior of North America than elsewhere in the world. Furthermore, shocked feldspar and granitic fragments are found at the K-T boundary in North America. These observations indicate the K-T boundary impact must have penetrated continental crust in North America

    A Grid Middleware for Ontology Access

    No full text
    Many advanced grid applications need access to ontologies represent-ing knowledge about a certain application domain. To deal with the high heterogeneity of available ontologies, we propose a general ser-vice-oriented middleware for making ontologies accessible to grid ap-plications. Our implementation is integrated in the German D-Grid in-frastructure and provides several applications a uniform access to biomedical ontologies such as Gene Ontology, NCI Thesaurus and several OBO ontologies

    The role of toll-like receptors (TLRs) in bacteria-induced maturation of murine dendritic cells (DCs) - Peptidoglycan and lipoteichoic acid are inducers of DC maturation and require TLR2

    Get PDF
    Toll-like receptors (TLRs) have been found to be key elements in pathogen recognition by the host immune system. Dendritic cells (DCs) are crucial for both innate immune responses and initiation of acquired immunity. Here we focus on the potential involvement of TLR ligand interaction in DC maturation. TLR2 knockout mice and mice carrying a TLR4 mutation (C3H/HeJ) were investigated for DC maturation induced by peptidoglycan (PGN), lipopolysaccharide (LPS), or lipoteichoic acids (LTAs). All stimuli induced maturation of murine bone marrow-derived DCs in control mice. TLR2− /− mice lacked maturation upon stimulation with PGN, as assessed by expression of major histocompatibility complex class II, CD86, cytokine, and chemokine production, fluorescein isothiocyanate-dextran uptake, and mixed lymphocyte reactions, while being completely responsive to LPS. A similar lack of maturation was observed in C3H/HeJ mice upon stimulation with LPS. DC maturation induced by LTAs from two different types of bacteria was severely impaired in TLR2− /−, whereas C3H/HeJ mice responded to LTAs in a manner similar to wild-type mice. We demonstrate that DC maturation is induced by stimuli from Gram-positive microorganisms, such as PGN and LTA, with similar efficiency as by LPS. Finally, we provide evidence that TLR2 and TLR4 interaction with the appropriate ligand is essential for bacteria-induced maturation of DCs

    Research core drilling in the Manson impact structure, Iowa

    Get PDF
    The Manson impact structure (MIS) has a diameter of 35 km and is the largest confirmed impact structure in the United States. The MIS has yielded a Ar-40/Ar-39 age of 65.7 Ma on microcline from its central peak, an age that is indistinguishable from the age of the Cretaceous-Tertiary boundary. In the summer of 1991 the Iowa Geological Survey Bureau and U.S. Geological Survey initiated a research core drilling project on the MIS. The first core was beneath 55 m of glacial drift. The core penetrated a 6-m layered sequence of shale and siltstone and 42 m of Cretaceous shale-dominated sedimentary clast breccia. Below this breccia, the core encountered two crystalline rock clast breccia units. The upper unit is 53 m thick, with a glassy matrix displaying various degrees of devitrification. The upper half of this unit is dominated by the glassy matrix, with shock-deformed mineral grains (especially quartz) the most common clast. The glassy-matrix unit grades downward into the basal unit in the core, a crystalline rock breccia with a sandy matrix, the matrix dominated by igneous and metamorphic rock fragments or disaggregated grains from those rocks. The unit is about 45 m thick, and grains display abundant shock deformation features. Preliminary interpretations suggest that the crystalline rock breccias are the transient crater floor, lifted up with the central peak. The sedimentary clast breccia probably represents a postimpact debris flow from the crater rim, and the uppermost layered unit probably represents a large block associated with the flow. The second core (M-2) was drilled near the center of the crater moat in an area where an early crater model suggested the presence of postimpact lake sediments. The core encountered 39 m of sedimentary clast breccia, similar to that in the M-1 core. Beneath the breccia, 120 m of poorly consolidated, mildly deformed, and sheared siltstone, shale, and sandstone was encountered. The basal unit in the core was another sequence of sedimentary clast breccia. The two sedimentary clast units, like the lithologically similar unit in the M-1 core, probably formed as debris flows from the crater rim. The middle, nonbrecciated interval is probably a large, intact block of Upper Cretaceous strata transported from the crater rim with the debris flow. Alternatively, the sequence may represent the elusive postimpact lake sequence

    Optical Response of Grating-Coupler-Induced Intersubband Resonances: The Role of Wood's Anomalies

    Full text link
    Grating-coupler-induced collective intersubband transitions in a quasi-two-dimensional electron system are investigated both experimentally and theoretically. Far-infrared transmission experiments are performed on samples containing a quasi-two-dimensional electron gas quantum-confined in a parabolic quantum well. For rectangular shaped grating couplers of different periods we observe a strong dependence of the transmission line shape and peak height on the period of the grating, i.e. on the wave vector transfer from the diffracted beams to the collective intersubband resonance. It is shown that the line shape transforms with increasing grating period from a Lorentzian into a strongly asymmetric line shape. Theoretically, we treat the problem by using the transfer-matrix method of local optics and apply the modal-expansion method to calculate the influence of the grating. The optically uniaxial quasi-two-dimensional electron gas is described in the long-wavelength limit of the random-phase approximation by a local dielectric tensor, which includes size quantization effects. Our theory reproduces excellently the experimental line shapes. The deformation of the transmission line shapes we explain by the occurrence of both types of Wood's anomalies.Comment: 28 pages, 7 figures. Physical Review B , in pres

    VLT Diffraction Limited Imaging and Spectroscopy in the NIR: Weighing the black hole in Centaurus A with NACO

    Full text link
    We present high spatial resolution near-infrared spectra and images of the nucleus of Centaurus A (NGC 5128) obtained with NAOS-CONICA at the VLT. The adaptive optics corrected data have a spatial resolution of 0.06" (FWHM) in K- and 0.11" in H-band, four times higher than previous studies. The observed gas motions suggest a kinematically hot disk which is orbiting a central object and is oriented nearly perpendicular to the nuclear jet. We model the central rotation and velocity dispersion curves of the [FeII] gas orbiting in the combined potential of the stellar mass and the (dominant) black hole. Our physically most plausible model, a dynamically hot and geometrically thin gas disk, yields a black hole mass of M_bh = (6.1 +0.6/-0.8) 10^7 M_sun. As the physical state of the gas is not well understood, we also consider two limiting cases: first a cold disk model, which completely neglects the velocity dispersion; it yields an M_bh estimate that is almost two times lower. The other extreme case is to model a spherical gas distribution in hydrostatic equilibrium through Jeans equation. Compared to the hot disk model the best-fit black hole mass increases by a factor of 1.5. This wide mass range spanned by the limiting cases shows how important the gas physics is even for high resolution data. Our overall best-fitting black hole mass is a factor of 2-4 lower than previous measurements. With our revised M_bh estimate, Cen A's offset from the M_bh-sigma relation is significantly reduced; it falls above this relation by a factor of ~2, which is close to the intrinsic scatter of this relation. (Abridged)Comment: 12 pages, 14 figures, including minor changes following the referee report; accepted for publication in The Astrophysical Journa
    corecore